A general approach to online network optimization problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A General Evolutionary/Neural Hybrid Approach to Learning Optimization Problems

A method combining the parallel search capabilities of Evolutionary Computation (EC) with the generalization of Neural Networks (NN) for solving learning optimization problems is presented. Assuming a fitness function for potential solutions can be found, EC can be used to explore the solution space, and the survivors of the evolution can be used as a training set for the NN which then generali...

متن کامل

Statistical Cooling: a General Approach to Combinatorial Optimization Problems

Statistical cooling is a new combinatorial optimization technique based on Monte-Carlo iterative improvement. The method originates from the analogy between the annealing of a solid as described by the theory of statistical physics and the optimization of a system with many degrees of freedom. In the present paper we present a general theoretical framework for the description of the statistical...

متن کامل

A Chance Constraint Approach to Multi Response Optimization Based on a Network Data Envelopment Analysis

In this paper, a novel approach for multi response optimization is presented. In the proposed approach, response variables in treatments combination occur with a certain probability. Moreover, we assume that each treatment has a network style. Because of the probabilistic nature of treatment combination, the proposed approach can compute the efficiency of each treatment under the desirable reli...

متن کامل

A General Iterative Approach to Variational Inequality Problems and Optimization Problems

We introduce a new general iterative scheme for finding a common element of the set of solutions of variational inequality problem for an inverse-strongly monotone mapping and the set of fixed points of a nonexpansive mapping in a Hilbert space and then establish strong convergence of the sequence generated by the proposed iterative scheme to a common element of the above two sets under suitabl...

متن کامل

A continuous-time approach to online optimization

We consider a family of learning strategies for online optimization problems that evolve in continuous time and we show that they lead to no regret. From a more traditional, discrete-time viewpoint, this continuous-time approach allows us to derive the no-regret properties of a large class of discretetime algorithms including as special cases the exponential weight algorithm, online mirror desc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM Transactions on Algorithms

سال: 2006

ISSN: 1549-6325,1549-6333

DOI: 10.1145/1198513.1198522